Arsenic mobilization in spent nZVI waste residue: Effect of Pantoea sp. IMH.

نویسندگان

  • Li Ye
  • Wenjing Liu
  • Qiantao Shi
  • Chuanyong Jing
چکیده

Nanoscale zero-valent iron (nZVI) is an effective arsenic (As) scavenger. However, spent nZVI may pose a higher environmental risk than our initial thought in the presence of As-reducing bacteria. Therefore, our motivation was to explore the As redox transformation and release in spent nZVI waste residue in contact with Pantoea sp. IMH, an arsC gene container adopting the As detoxification pathway. Our incubation results showed that IMH preferentially reduce soluble As(V), not solid-bound As(V), and was innocent in elevating total dissolved As concentrations. μ-XRF and As μ-XANES spectra clearly revealed the heterogeneity and complexity of the inoculated and control samples. Nevertheless, the surface As local coordination was not affected by the presence of IMH as evidenced by similar As-Fe atomic distance (3.32-3.36 Å) and coordination number (1.9) in control and inoculated samples. The Fe XANES results suggested that magnetite in nZVI residue was partly transformed to ferrihydrite, and the IMH activity slowed down the nZVI aging process. IMH distorted Fe local coordination without change its As adsorption capacity as suggested by Mössbauer spectroscopy. Arsenic retention is not inevitably enhanced by in situ formed secondary Fe minerals, but depends on the relative As affinity between the primary and secondary iron minerals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome Sequence of the Aerobic Arsenate-Reducing Bacterium Pantoea sp. Strain IMH

We here report the draft assembly for the genome of Pantoea sp. strain IMH, isolated from arsenic-contaminated soil in Inner Mongolia, China, with the ability to aerobically reduce arsenate to arsenite. The genome sequence will allow for the characterization of the molecular mechanisms of arsenate reduction.

متن کامل

Arsenic resistance strategy in Pantoea sp. IMH: Organization, function and evolution of ars genes

Pantoea sp. IMH is the only bacterium found in genus Pantoea with a high As resistance capacity, but its molecular mechanism is unknown. Herein, the organization, function, and evolution of ars genes in IMH are studied starting with analysis of the whole genome. Two ars systems - ars1 (arsR1B1C1H1) and ars2 (arsR2B2C2H2) - with low sequence homology and two arsC-like genes, were found in the IM...

متن کامل

Photoproduction of WH signal at electron-proton Colliders

We present the photoproduction of an intermediate mass Higgs (IMH) boson associated with a W boson at the future electron-proton colliders using bremsstrahlung photon beam or laser backscattered photon beam. With bremsstrahlung photon beam the search for the IMH boson is unfavorable because of the small signal rate. But with laser photon beam the search is viable due to a much larger rate, and ...

متن کامل

Anaerobic microbial mobilization and biotransformation of arsenate adsorbed onto activated alumina.

Due to the enactment of a stricter drinking water standard for arsenic in the United States, larger quantities of arsenic will be treated resulting in larger volumes of treatment residuals. The current United States Environmental Protection Agency recommendation is to dispose spent adsorbent residuals from arsenic treatment into non-hazardous municipal solid waste (MSW) landfills. The potential...

متن کامل

Intraparticle reduction of arsenite (As(III)) by nanoscale zerovalent iron (nZVI) investigated with In Situ X-ray absorption spectroscopy.

While a high efficiency of contaminant removal by nanoscale zerovalent iron (nZVI) has often been reported for several contaminants of great concern, including aqueous arsenic species, the transformations and translocation of contaminants at and within the nanoparticles are not clearly understood. By analysis using in situ time-dependent X-ray absorption spectroscopy (XAS) of the arsenic core l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental pollution

دوره 230  شماره 

صفحات  -

تاریخ انتشار 2017